THE C=O STRETCHING VIBRATION OF 1,3-BENZ[*f*]INDANEDIONE DERIVATIVES

A.PERJÉSSY^{*a*}, J.ROTBERGS^{*b*} and \dagger V.P.OŠK \overline{A} JA^{*b*}

^a Department of Organic Chemistry, Comenius University, 801 00 Bratislava, and ^b August Kirchenstein Institute of Microbiology, Latvian Academy of Sciences, Riga – 55, Latvia, U.S.S.R.

Received February 26th, 1975

Carbonyl stretching vibrations of twenty seven 1,3-benz[f]indanedione derivatives have been measured in tetrachloromethane and chloroform. An empirical linear relationship including 50 experimental points was found between the wavenumbers of symmetric and asymmetric C==O stretching vibration bands. With 2-benzylidene derivatives, the arithmetic means of the wavenumbers of symmetric and asymmetric C==O stretching vibration bands correlate satisfactorily with σ^+ substituent constants. Spectral measurements and the linear correlation were compared with those of other 1,3-indanediones. The influence of the structure molecular geometry, and electronic state on the C==O stretching vibration is discussed. The preparation of some new 1,3-benz[f]indanediones is also descirbed.

Infrared spectra measured in solid state have been used previously^{1,2} to determine the structure of some 1,3-benz[f]-indanediones. However, the C=O stretching vibration of this compound has not yet been measured in organic solvents. In a series of papers³⁻¹⁰ we have systematically studied the C=O stretching vibration in various series of 1,3-indanediones, 4,7-dithia-4,5,6,7-tetrahydro-1,3-indanediones and 5,7dioxo-6,7-dihydro-5*H*-dibenzo[*a*,*c*]cycloheptenes.

Continuing our investigation of infrared spectra of cyclic 1,3-diketones, we have measured in tetrachloromethane and in chloroform the carbonyl stretching vibration of a series of 1,3-benz[f]indanediones. The investigated compounds can be formally divided into two structural types: compounds containing a $C_{(2)}$ atom in sp^3 -hybrid state (I) and compounds containing a $C_{(2)}$ atom in sp^2 -hybrid state (II).

Collection Czechoslov, Chem. Commun. [Vol. 41] [1976]

EXPERIMENTAL

Syntheses, purification and some physico-chemical constants of compounds I with the exception of 2-bromo-2-(3-bromophenyl)-1,3-benz[f]indanedione were described in papers^{2,11-14}.

2-Bromo-2-(3-bromophenyl)-1,3-benz[f]indanedione: 0.32 g of 2-(3-bromophenyl)-1,3-benz[f]indanedione was dissolved in 5 ml of acetic acid and a solution of bromine (0.08 ml) in acetic acid (1 ml) was added. The mixture was heated for a few minutes. After cooling the precipitate was filtered off; m.p. $174-175^{\circ}$ C (acetic acid): For $C_{19}H_{10}Br_2O_2$ (430.1), calculated: 37.16% Br; found 37.15% Br.

Compounds II were prepared from the condensation product of naphthalene-2,3-dicarboxylic anhydride and ethylacetoacetate, by treatment with substituted benzaldehyde, furfural or cinnamaldehyde in acetic acid according to¹. The products were crystallized from acetic acid. Analytical data and melting points of new compounds are given in Table I.

Methods: The spectra were measured in tetrachloromethane and in chloroform on a Zeiss UR 20 spectrophotometer by the reported technique⁴. The linear $v_s vs v_{ac}$ and $\bar{v} vs \sigma^+$ correlations were processed by means of statistic relations using a Regnecentralen Gier digital computer. In Hammett correlations σ^+ substituent constants collected in paper¹⁵ were used.

TABLE I

1,3-Benz[f]indanediones II

R	Formula (m.w.)	Calculated/Found				N - °C4	
		% C	% Н	% N	% Hal.	м.р., С	
4-ClC ₆ H ₄	$C_{20}H_{11}ClO_2$ (318.8)	75•36 74•34	3·48 3·40	_	11·12 11·34	258-260	
3-BrC ₆ H ₄	C ₂₀ H ₁₁ BrO ₂ (363·2)	66·14 65·95	3∙05 3∙08		22·00 22·13	260-262	
3-IC ₆ H ₄	$C_{20}H_{11}IO_{2}$ (410·2)	58-56 57-92	2·70 2·63		30·94 31·09	243-245	
3-CH ₃ OC ₆ H ₄	$C_{21}H_{14}O_{3}$ (314·3)	80·24 80·79	4·49 4·42	_		163-164	
3-NO ₂ C ₆ H ₄	C ₂₀ H ₁₁ NO ₄ (329·3)	72·95 72·60	3·37 3·23	4·25 3·81		310-315 (dec.)	
4-CH ₃ CONHC ₆ H ₄	C ₂₂ H ₁₅ NO ₃ (341·4)	77·41 77·82	4·43 4·33	4·10 3·72		302-305 (dec.)	
C ₆ H ₅ CH=CH	C ₂₂ H ₁₄ O ₂ (310·4)	85·14 83·97	4∙55 4∙44	—	_	228230	
2-C ₄ H ₃ O ^b	C ₁₈ H ₁₀ O ₃ (274·3)	78∙83 78∙03	3·67 3·60	_		240-242	

Melting points were determined in a Thiele apparatus and were not corrected; ^b furyl.

2210

RESULTS AND DISCUSSION

Wavenumbers of the C=O stretching vibration bands measured in tetrachloromethane and chloroform for 1,3-benz[f]indanediones I and II are listed in Tables II and III, respectively. All compounds I and II, analogously to other 1,3-indanedione derivatives³⁻¹⁰ exist in the organic solvents mainly in the diketo form and display doubled carbonyl bands corresponding to the symmetric (v_s) and asymmetric (v_{as}) stretching mode of 1,3-dicarbonyl system. The wavenumbers of bands of 1,3-benz-[f]indanediones are c. 5 cm⁻¹ lower than those of the corresponding 1,3-indanediones³⁻⁶. This can be explained by stronger electron-donating effect of naphthalene ring in comparison with that of benzene ring.

It is known¹⁶ that the wavenumber separation: $\Delta v = v_s - v_{as}$ can be used as a measure of the degree of mechanical coupling in vibrating 1,3-dicarbonyl system. The Δv values observed with 1,3-benz[f] indanediones I and II are 26-33 cm⁻¹ and 28-42 cm⁻¹, respectively and are only a little lower than those found in corresponding 1,3-indanediones³⁻¹⁰, *i.e.* 31-40 cm⁻¹ and 36-49 cm⁻¹, respectively. From the mentioned it follows that the vibration coupling in 1,3-benz[f] indanediones is somewhat weaker than in the case of 1,3-indanediones. This can be probably caused by little decrease in the angle between the two vibrating C=O groups. It can be mentioned that a more significant variation in the degree of vibration coupling has

Com- pound	R ¹	D ²	In CCl ₄		ln CHCl ₃	
		. K -	v _{as}	ν _s	v _{as}	v _s
1	н	н	1 720	1 748	1 716	1 745
2	Н	C ₆ H ₅	1 720	1 750	1 717	1 749
3	Н	$4 \cdot CH_3C_6H_4$	1 720	1 751	1 718	1 749
4	Н	$3-BrC_6H_4$	1 719	1 749	1 717	1 748
5	Н	4-CH ₃ CONHC ₆ H ₅	b	ь	1 718	1 748
6	н	$3,4-(OCH_3)_2C_6H_3$	1 720	1 751	1 718	1 749
7	Н	$1 - C_{10} H_7^a$	1 720	1 751	1 717	1 750
8	Н	$2 - C_{10} H_7^{a}$	1 720	1 751	1 718	1 748
9	C_6H_5	$CH_2C_6H_5$	1 716	1 749	1 714	1 745
10	C_6H_5	$CH_2CH=CH_2$	1 716	1 749	1 714	1 746
11	Br	$C_6 \tilde{H}_5$	1 728	1 756	1 724	1 751
12	Br	3-BrC ₆ H ₄	1 729	1 754	1 725	1 751

Wavenumbers (cm⁻¹) of the Carbonyl Stretching Vibration Bands of 1,3-Benz[f]indanedione I Containing a C₍₂₎ Atom in sp^3 -Hybrid State

^a Naphthyl; ^b low solubility in CCl₄.

TABLE II

been found on the bases of Δv values in the series of 4,7-dithia-4,5,6,7-tetrahydro-1,3--indanediones⁹ and 5,7-dioxo-6,7-dihydro-5*H*-dibenzo[*a*,*c*]cycloheptenes¹⁰ in comparison with 1,3-indanediones and 1,3-benz[*f*]indanediones. This may be explained by the larger change in the angle between the two vibrating C=O groups. The degree of vibration coupling changes also significantly passing from the series *I* to series *II*, which may be accounted for the electronic effect of substituted benzylidene moiety conjugated directly with both carbonyl groups. The electron-withdrawing substituents cause a decrease and the electron-donating substituents cause an increase in Δv values as well as in the degree of the mechanical coupling of C=O stretching vibrations.

Similarly as in other series of 1,3-dicarbonyl compounds^{5,9,10,17,18} also in 1,3--benz[f]indanediones studied here a significant linear correlations exist between wavenumbers of the symmetric and asymmetric C=O stretching vibration bands measured in both solvents. As the slopes of regression lines for v_s vs v_{as} correlations for data measured in both solvents CCl₄ and CHCl₃ are practically identical, we can express the v_s vs v_{as} correlation as a common relationship for all data measured in

TABLE III

Wavenumbers of the Carbonyl Stretching Vibration Bands of 1,3-Benz[f]indanediones II Containing a $C_{(2)}$ Atom in sp^2 -Hybrid State

Com- pound	D	In CCl ₄			In CHCl ₃			
	ĸ	v _{as}	vs	v	v _{as}	v _s	v	
13	4-(CH _a) _a NC _a H	1 680	1 720	1 700.0	1 671	1 712	1 691.5	
14	4-CH_OC_H	1 691	1 726	1 708.5	1 683	1 723	1 703.0	
15	4-CH ₂ CONHC ₂ H ₄	c	c		1 688	1 725	1 706.5	
16	C ₆ H ₆	1 695	1 731	1 713.0	1 690	1 727	1 708.5	
17	3-CH ₃ OC ₆ H ₄	1 695	1 731	1 713.0	1 690	1 728	1 709.0	
18	4-ClC ₆ H ₄	1 696	1 733	1 714.5	1 693	1 730	1 71 1 ·5	
19	$4-BrC_6H_4$	1 696	1 732	1 714.0	1 692	1 728	1 710·0	
20	3-IC ₆ H ₄	1 698	1 735	1 716.5	1 696	1 731	1 713.5	
21	3-BrC ₆ H ₄	1 697	1 734	1 713.5	1 695	1 731	1 713.0	
22	$4-NO_{2}C_{6}H_{4}$	1 699	1 735	1 717.0	1 698	1 733	1 715.5	
23	$3-NO_2C_6H_4$	с	с		1 704	1 737	1 720.5	
24	$4-(C_2H_5)_2NC_6H_4$	1 679	1 718	1 698.5	1 670	1 711	1 690.5	
25	$2 - C_4 H_3 O^a$	1 693	1 729	1 711.0	1 685	1 725	1 705.0	
26	$3-C_8H_6N^b$	с	с		1 674	1 716	1 695.0	
27	CH=CHC ₆ H ₅	1 694	1 728	1 711.0	1 686	1 724	1 705.0	

^{*a*} Furyl; ^{*b*} indolyl; ^{*c*} low solubility in CCl₄.

2212

both solvents (Fig. 1)

$$v_s = 0.756v_{as} + 448.9$$
, $r = 0.995$, $s_a = 0.011$, $s = 1.3$,

where r is correlation coefficient, s_{ϱ} is the standard deviation of ϱ and s is the standard deviation of correlation. For the sake of comparison we have calculated from the data measured in CCl₄, CHCl₃ and CH₃CN and from those published earlier⁴ an analogous relationship for 406 experimental points of 1,3-indanediones:

$$v_{\rm s} = 0.781 v_{\rm as} + 412.8$$
, $r = 0.993$, $s_{\rm o} = 0.005$, $s = 1.6$.

It was shown by Fayat and Faucaud^{17,18} that in cyclic imides and anhydrides in most cases the v_{as} is more sensitive to the solvent than the v_s which causes that the slopes of $v_s vs v_{as}$ correlations are always lower than 1. In the case of diketo form of 1,3-cyclopentanedines and 1,3-cyclohexanediones¹⁷, in which mesomeric interaction between the vibrating C=O groups is absent, the slopes of $v_s vs v_{as}$ correlations are nearly 1, *i.e.* the wavenumbers of symmetric and asymmetric C=O stretching vibration bands are equally influenced by solvents. In 1,3-indanediones⁴, where the π -electrons of benzene ring contribute to the mesomeric interaction in the five-membered 1,3-dicarbonyl system, the value of the slope of $v_s vs v_{as}$ relationship (0.781) indicates a significant asymmetry in the sensitivity of the symmetric and asymmetric C=O

FIG. 1

The Correlation of the Wavenumbers of Symmetric and Asymmetric C=O Stretching Vibration Bands of 1,3-Benz[f]indanediones I and II in Tetrachloromethane and in Chloroform

Plot of the Arithmetic Means \bar{v} of the Wavenumbers of Symmetric and Asymmetric C=O Stretching Vibration Bands $vs \sigma^+$ Substituent Constant for Substituted 2-Benzylidene-1,3-benz[f]indanediones (II)

 \circ In tetrachloromethane, \bullet in chloroform.

stretching frequencies to the structure variation. This effect becomes somewhat more extensive in the case of 1,3-benz[f]indanediones (the slope of v_s vs v_{as} relationship is 0.756) due to the higher electron-donating ability of naphthalene ring in comparison with benzene ring. In the case of 4,7-dithia-4,5,6,7-tetrahydro-1,3-indanediones⁹, where only two π -electrons contribute to the mesomeric interaction between the carbonyl groups, the slope of v_s vs v_{as} relationship is 0.825 and the above mentioned effect of asymmetry is weaker in comparison with 1,3-indanediones.

As in the case of 2-benzylidene derivatives of other 1,3-indanediones^{3,5-8}, also in the series of substituted 2-benzylidene-1,3-benz[f]indanediones we found the validity of Hammett correlations between the arithmetic means of wavenumbers of the symmetric and asymmetric C=O stretching (\bar{v}) and σ^+ substituent constants. The regression parameters of straight lines are (see Fig. 2), for 9 experimental points from data measured in CCl₄

 $\bar{v} = 7.04\sigma^+ + 1712.9$, r = 0.986, $s_a = 0.45$, s = 0.9

and for 9 experimental points from data measured in CHCl₃

 $\bar{v} = 9.72\sigma^+ + 1709.1$, r = 0.990, $s_p = 0.53$, s = 1.1.

The comparison of the slopes (ϱ) of $\bar{\nu} vs \sigma^+$ correlation in series of 2-benzylidene--4,7-dithia-4,5,6,7-tetrahydro-1,3-indanediones⁷ ($\varrho = 4.14 \text{ cm}^{-1}$ in CCl₄ and $\varrho = 5.40 \text{ cm}^{-1}$ in CHCl₃), 2-benzylidene-1,3-indanediones ($\varrho = 6.20 \text{ cm}^{-1}$ in CCl₄ and 8.92 cm^{-1} in CHCl₃) and 2-benzylidene-1,3-benz[f]indanediones ($\varrho = 7.04 \text{ cm}^{-1}$ in CCl₄ and $\varrho = 9.72 \text{ cm}^{-1}$ in CHCl₃) shows that the sensitivity of substituent effects to the C=O groups increases in the same order as the mesomeric interaction between the carbonyl groups and the asymmetry of structure sensitivity of the symmetric and asymmetric C=O stretching vibrations increase. It seems that the $\varrho(v_s vs v_{as})$ values are nearly linearly dependent on the corresponding $\varrho(\bar{v} vs \sigma^+)$ values.

We express our thank to Prof. M. Beker, corresponding member of the Academy of Sciences of Latvian S.S.R., for his kind support of this co-operation between the A. Kirchenstein Institute of Microbiology and the Department of Organic Chemistry, Comenius University. We wish also to thank Dr P. Hrnčiar for valuable comments and stimulating discussions.

REFERENCES

- 1. Rotbergs J. T., Oškāja V. P.: Latv. PSR Zinat. Akad. Vestis, Khim. Ser. 1972, 77.
- 2. Rotbergs J. T., Oškāja V. P.: Latv. PSR Zinat. Akad. Vestis, Khim. Ser. 1972, 224.
- 3. Perjéssy A., Zacharová-Kalavská D.: This Journal 35, 3802 (1970).
- 4. Perjéssy A., Hrnčiar P.: Tetrahedron 27, 6159 (1971).
- 5. Perjéssy A., Hrnčiar P., Krutošíková A.: Tetrahedron 28, 1025 (1972).

2214

C=O Stretching Vibration of 1,3-Benz[f]indanedione Derivatives

- 6. Perjéssy A., Hrnčiar P., Frimm R., Fišera L.: Tetrahedron 28, 3781 (1972).
- 7. Perjéssy A., Hrnčiar P., Sokolová R.: This Journal 38, 559 (1973).
- 8. Perjéssy A., Hrnčiar P.: Acta Fac. Rerum Nat. Univ. Comenianae, Chimia 18, 89 (1973).
- 9. Perjéssy A., Temkovitz P., Hrnčiar P.: This Journal, in press.
- 10. Perjéssy A., Szemes F., Hrnčiar P.: This Journal, in press.
- 11. Meier R., Lotter H. G.: Chem. Ber. 90, 222 (1957).
- 12. Koelsch C. F.: J. Org. Chem. 10, 366 (1945).
- 13. Oškāja V. P., Vanags G. J.: Latv. PSR Zinat. Akad. Vestis. Khim. Ser. 1962, 239.
- 14. Janson S. A., Vanags G. J.: Latv. PSR Zinat. Akad. Vestis, Khim. Ser. 1964, 571.
- 15. Perjéssy A.: Tetrahedron 29, 3189 (1973).
- 16. Bellamy L. J., Connelly B. R., Philpotts A. R., Williams R. L.: Z. Elektrochem. 64, 563 (1960).
- 17. Fayat C., Faucaud A.: Bull. Soc. Chim. Fr. 1970, 4491.
- 18. Fayat C., Faucaud A.: Bull. Soc. Chim. Fr. 1970, 4505.